
Beetroot Finance
Audit Report

Tue Feb 18 2025

contact@bitslab.xyz https://twitter.com/tonbit_

Beetroot Finance Audit Report

1 Executive Summary

1.1 Project Information

Description Deposit USDT and farm the best available yield across the
TON ecosystem

Type DeFi

Auditors TonBit

Timeline Wed Feb 05 2025 - Tue Feb 18 2025

Languages FunC

Platform Ton

Methods Architecture Review, Unit Testing, Manual Review

Source Code https://github.com/Beetroot-fi/contracts

Commits 68d7a2b9c16316e65c2d46afc94a929002cb52b6
636dd8427789369514c5657233f68516f081af43

1/17

https://github.com/Beetroot-fi/contracts
https://github.com/Beetroot-fi/contracts/tree/68d7a2b9c16316e65c2d46afc94a929002cb52b6
https://github.com/Beetroot-fi/contracts/tree/636dd8427789369514c5657233f68516f081af43

1.2 Files in Scope

The following are the SHA1 hashes of the original reviewed files.

ID File SHA-1 Hash

GAS1 contracts/imports/gas.fc 009fc000c4b99fa1535ea4aa67771
d4ec0d0af88

POO contracts/pool.fc cfc85be99375256813d2e30aebddf
b1b037ee2d6

OCO2 contracts/imports/op-codes.fc 8b7277a2d004abf2a6c482bf1f304
ce2a4de8e60

UTI contracts/imports/utils.fc 3bd2b5bebbf262a04e9b23b9455c
bc88830da4d6

2/17

1.3 Issue Statistic

Item Count Fixed Acknowledged

Total 6 6 0

Informational 2 2 0

Minor 2 2 0

Medium 1 1 0

Major 1 1 0

Critical 0 0 0

3/17

1.4 TonBit Audit Breakdown

MoveBit aims to assess repositories for security-related issues, code quality, and compliance
with specifications and best practices. Possible issues our team looked for included (but are
not limited to):

Transaction-ordering dependence

Timestamp dependence

Integer overflow/underflow by bit operations

Number of rounding errors

Denial of service / logical oversights

Access control

Centralization of power

Business logic contradicting the specification

Code clones, functionality duplication

Gas usage

Arbitrary token minting

Unchecked CALL Return Values

The flow of capability

Witness Type

4/17

1.5 Methodology

The security team adopted the "Testing and Automated Analysis", "Code Review" and
"Formal Verification" strategy to perform a complete security test on the code in a way
that is closest to the real attack. The main entrance and scope of security testing are stated
in the conventions in the "Audit Objective", which can expand to contexts beyond the scope
according to the actual testing needs. The main types of this security audit include:

(1) Testing and Automated Analysis

Items to check: state consistency / failure rollback / unit testing / value overflows / parameter
verification / unhandled errors / boundary checking / coding specifications.

(2) Code Review

The code scope is illustrated in section 1.2.

(3) Formal Verification(Optional)

Perform formal verification for key functions with the Move Prover.

(4) Audit Process

Carry out relevant security tests on the testnet or the mainnet;

If there are any questions during the audit process, communicate with the code owner

in time. The code owners should actively cooperate (this might include providing the

latest stable source code, relevant deployment scripts or methods, transaction

signature scripts, exchange docking schemes, etc.);

The necessary information during the audit process will be well documented for both

the audit team and the code owner in a timely manner.

5/17

2 Summary

This report has been commissioned by Beetroot Finance to identify any potential issues and
vulnerabilities in the source code of the Beetroot Finance smart contract, as well as any
contract dependencies that were not part of an officially recognized library. In this audit, we
have utilized various techniques, including manual code review and static analysis, to
identify potential vulnerabilities and security issues.

During the audit, we identified 6 issues of varying severity, listed below.

ID Title Severity Status

POO-1 Centralization Risk Major Fixed

POO-2 Unprocessed Bounced Messages Medium Fixed

POO-3 Missing Check in Swap Fee
Calculation

Minor Fixed

POO-4 Potential Precision Loss in
Calculation

Minor Fixed

POO-5 Incorrect Comment Informational Fixed

POO-6 Unnecessary Computation Informational Fixed

6/17

3 Participant Process

Here are the relevant actors with their respective abilities within the Beetroot Finance Smart
Contract :
Admin

unstake : Withdraws staked assets from supported protocols.

withdraw : Transfers funds from the contract to a specified wallet address.

upgrade_contract : Updates the data and code of the contract.

update_price_data : Updates the ROOT price and APY.

User

transfer_usdt : Exchanges USDT for ROOT tokens and stakes a portion of the USDT.

transfer_root : Exchanges ROOT for USDT.

get_price_data : Gets current ROOT price, APY, and available USDT.

7/17

4 Findings

POO-1 Centralization Risk

Severity: Major

Status: Fixed

Code Location:

contracts/pool.fc#291-298

Descriptions:

A centralization risk was identified in the smart contract:

The current admin has unrestricted control over critical contract functions, including:

Arbitrarily updating price data

Performing unstake operations

Transferring any funds

Upgrading the contract at any time

If the admin account is compromised, all contract funds would be at risk.

 ifif ((op op ==== op op::::update_price_dataupdate_price_data)) {{
 throw_unlessthrow_unless((errerr::::not_adminnot_admin,, equal_slices_bitsequal_slices_bits((sender_addresssender_address,, admin admin))));;

 int new_root_price int new_root_price == in_msg_body in_msg_body~~load_uintload_uint((6464));;
 int new_apy int new_apy == in_msg_body in_msg_body~~load_uintload_uint((3232));;
 in_msg_bodyin_msg_body..end_parseend_parse(());;

 root_price root_price == new_root_price new_root_price;;
 current_apy current_apy == new_apy new_apy;;
 save_datasave_data(());;

 returnreturn (());;
 }}

Suggestion:

Use multisig mechanisms to mitigate the risk of a single-point failure.

8/17

Introduce a time delay for contract upgrades to allow users to react in case of

unexpected changes.

Refer to Stonfi’s implementation for secure upgrade mechanisms:

Stonfi Admin Calls

Resolution:

This issue has been fixed. The client has adopted our suggestions.

9/17

https://github.com/ston-fi/dex-core/blob/main/contracts/router/admin-calls.func

POO-2 Unprocessed Bounced Messages

Severity: Medium

Status: Fixed

Code Location:

contracts/pool.fc#160-187

Descriptions:

In the receive_usdt message handler, the contract uses part of the user's funds to buy TLP

and stake TON hedge while setting the sent messages as bounced. This means that if the

buy or stake operations fail, the bounced messages can be used to handle the failed

transactions appropriately.

However, the contract does not handle bounced messages and simply ignores them

instead of implementing recovery or refund logic.

 cell buy_tlp_fwd_payload cell buy_tlp_fwd_payload == begin_cellbegin_cell(())
 ..store_uintstore_uint((opop::::tradoor_create_increase_lp_pos_ordertradoor_create_increase_lp_pos_order,, 88))
 ..store_coinsstore_coins((tradoor_deposit_amounttradoor_deposit_amount))
 ..store_coinsstore_coins((5000000050000000)) ;;;; 0.050.05 ton ton
 ..end_cellend_cell(());;
 send_jettonssend_jettons((
 tradoor_deposit_amounttradoor_deposit_amount,,
 tradoor_pooltradoor_pool,,
 query_idquery_id,,
 usdt_jetton_walletusdt_jetton_wallet,,
 buy_tlp_fwd_payloadbuy_tlp_fwd_payload,,
 100000000100000000,, ;;;; 0.10.1 ton ton
 150000000150000000,, ;;;; ;;;; 0.150.15 ton ton
 ownerowner
));;

 ;;;; stake ton hedge stake ton hedge
 send_jettonssend_jettons((
 ton_hedge_deposit_amountton_hedge_deposit_amount,,
 ton_hedge_poolton_hedge_pool,,
 query_idquery_id,,
 usdt_jetton_walletusdt_jetton_wallet,,
 begin_cellbegin_cell(())..store_uintstore_uint((opop::::ton_hedge_staketon_hedge_stake,, 3232))..end_cellend_cell(()),,

10/17

 110000000110000000,, ;;;; 0.110.11 ton ton
 150000000150000000,, ;;;; 0.150.15 ton ton
 ownerowner
));;

Suggestion:

It is recommended to explicitly handle bounced messages in the contract.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

11/17

POO-3 Missing Check in Swap Fee Calculation

Severity: Minor

Status: Fixed

Code Location:

contracts/pool.fc#153

Descriptions:

The line jetton_amount -= ONE_USDT; lacks a check for negative values. If jetton_amount is

smaller than ONE_USDT , this operation could result in a negative value, leading to

undefined behavior or potential vulnerabilities.

Suggestion:

To mitigate this risk, it is recommended to add an check before performing the subtraction.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

12/17

POO-4 Potential Precision Loss in Calculation

Severity: Minor

Status: Fixed

Code Location:

contracts/pool.fc#192

Descriptions:

There is a calculation for mint_amount that involves division followed by multiplication:

int mint_amount int mint_amount == ((jetton_amount jetton_amount // root_price root_price)) ** 100000100000;;

Performing division before multiplication can result in truncation of fractional values,

reducing the accuracy of the calculation.

Suggestion:

Precision loss can lead to incorrect calculations, especially when dealing with small values or

high-precision requirements.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

13/17

POO-5 Incorrect Comment

Severity: Informational

Status: Fixed

Code Location:

contracts/pool.fc#160

Descriptions:

In the contract, the comment during the buy TLP operation is mistakenly written as but

tlp instead of buy tlp .

 ;;;; but tlp but tlp
 cell buy_tlp_fwd_payload cell buy_tlp_fwd_payload == begin_cellbegin_cell(())
 ..store_uintstore_uint((opop::::tradoor_create_increase_lp_pos_ordertradoor_create_increase_lp_pos_order,, 88))
 ..store_coinsstore_coins((tradoor_deposit_amounttradoor_deposit_amount))
 ..store_coinsstore_coins((5000000050000000)) ;;;; 0.050.05 ton ton
 ..end_cellend_cell(());;
 send_jettonssend_jettons((
 tradoor_deposit_amounttradoor_deposit_amount,,
 tradoor_pooltradoor_pool,,
 query_idquery_id,,
 usdt_jetton_walletusdt_jetton_wallet,,
 buy_tlp_fwd_payloadbuy_tlp_fwd_payload,,
 100000000100000000,, ;;;; 0.10.1 ton ton
 150000000150000000,, ;;;; ;;;; 0.150.15 ton ton
 ownerowner
));;

Suggestion:

Updating the comment will improve the clarity and maintainability of the code.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

14/17

POO-6 Unnecessary Computation

Severity: Informational

Status: Fixed

Code Location:

contracts/pool.fc#82-86

Descriptions:

A certain calculation is performed unconditionally, even though its result is only utilized

within the else condition. This leads to unnecessary computation when the if condition is

met, which often happens.

 int int_profit_part int int_profit_part == profit profit // ONE_USDTONE_USDT;;
 int frac_profit_part int frac_profit_part == profit profit -- ((int_profit_part int_profit_part ** ONE_USDTONE_USDT));;

 slice int_profit_part_s slice int_profit_part_s == convert_int_to_sliceconvert_int_to_slice((int_profit_partint_profit_part));;
 slice frac_profit_part_s slice frac_profit_part_s == convert_int_to_sliceconvert_int_to_slice((frac_profit_partfrac_profit_part));;

Suggestion:

To optimize performance, the calculation should be moved inside the else block.

Resolution:

This issue has been fixed. The client has adopted our suggestions.

15/17

Appendix 1

Issue Level

Informational issues are often recommendations to improve the style of the code or

to optimize code that does not affect the overall functionality.

Minor issues are general suggestions relevant to best practices and readability. They

don't post any direct risk. Developers are encouraged to fix them.

Medium issues are non-exploitable problems and not security vulnerabilities. They

should be fixed unless there is a specific reason not to.

Major issues are security vulnerabilities. They put a portion of users' sensitive

information at risk, and often are not directly exploitable. All major issues should be

fixed.

Critical issues are directly exploitable security vulnerabilities. They put users' sensitive

information at risk. All critical issues should be fixed.

Issue Status

Fixed: The issue has been resolved.

Partially Fixed: The issue has been partially resolved.

Acknowledged: The issue has been acknowledged by the code owner, and the code

owner confirms it's as designed, and decides to keep it.

16/17

Appendix 2

Disclaimer

This report is based on the scope of materials and documents provided, with a limited
review at the time provided. Results may not be complete and do not include all
vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available
basis. You agree that your access and/or use, including but not limited to any associated
services, products, protocols, platforms, content, and materials, will be at your own risk. A
report does not imply an endorsement of any particular project or team, nor does it
guarantee its security. These reports should not be relied upon in any way by any third
party, including for the purpose of making any decision to buy or sell products, services, or
any other assets. TO THE FULLEST EXTENT PERMITTED BY LAW, WE DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, IN CONNECTION WITH THIS REPORT, ITS CONTENT,
RELATED SERVICES AND PRODUCTS, AND YOUR USE, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NOT
INFRINGEMENT.

17/17

	761_page1.pdf
	761_page2.pdf

